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Mathematical Description of Consensus Building 

Source Data 

𝑁 — number of Assetboxes that participate in building consensus in the distributed ledger 

token accounting system of the Bitbon System, 

𝐵(𝑛) — balance of Assetbox number 𝑛, 𝑛 = 1,2,3, . . . , 𝑁, 

𝐵𝐵(𝑛) = 𝐵(𝑛) + 𝐵(1)(𝑛) — base balance where 𝐵(1)(𝑛) = ∑
[𝑙[1](𝑛)]
𝑖=1 𝐵(𝑛(𝑖)) is the sum 

total of Assetbox balances of its first connection line, 𝐵(𝑛(𝑖)) is the balance of the 𝑖 

Assetbox of the first line number 𝑛(𝑖). 

Analytical Expressions to Perform a Sequence of Actions Related to Calculating 

Remuneration for Activity as a Registrator 

1. 

Let us calculate the (common value) 

𝐵𝑎𝑣𝑔 — average of balances of the Assetboxes that participate in building consensus in the 

distributed ledger token accounting system of the Bitbon System, 

𝐵𝑎𝑣𝑔 = ∑𝑁
𝑛=1 𝐵 (𝑛) 𝑁⁄ . 

2. 

Let us calculate the (individual value) for each Assetbox number 𝑛 

𝑏𝑟(𝑛) — relative balance of the Assetbox, 

𝑏𝑟(𝑛) = 𝐵 (𝑛) 𝐵𝑎𝑣𝑔⁄ , 

3.  

Let us assign 𝑧 > 0, an influence coefficient of the first connection line and function 

𝑓(𝑏𝑟(𝑛)), an influence regulator of the first line, by selecting its parameters 𝑎 > 𝑑 > 0,

𝑐 > 0. 

It sets the value of entering the level of zero Assetboxes to zero. 

It depends on the relative balance 𝑏𝑟(𝑛) of Assetbox number 𝑛. 
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It is continuous on the positive semiaxis and 𝑓(0) = 0, 𝑓(∞) = 1: 

𝑓(𝑥) = [𝑥𝛼 + 𝑐 ∗ 𝑥𝑑] (1 + 𝑥𝛼)⁄ , 𝑥 ≥ 0, 𝑎 > 𝑑 > 0. 

4. 

Based on the total balance 𝐵(1)(𝑛) of the first connection line 𝐵(1)(𝑛) =

∑
[𝑙[1](𝑛)]
𝑖=1 𝐵(𝑛(𝑖)) for each Assetbox number 𝑛, we calculate 𝑅(𝑛), the value of bringing 

Assetbox number 𝑛 to a certain level (adjusted base balance) determined by the value 

𝑅(𝑛) = 𝐵(𝑛) + 𝑧 ∗ 𝐵(1)(𝑛) ∗ 𝑓(𝑏𝑟(𝑛)), 

that depends on the balance 𝐵(𝑛) of Assetbox number 𝑛, as well as the total balance 

𝐵(1)(𝑛) = ∑
[𝑙[1](𝑛)]
𝑖=1 𝐵(𝑛(𝑖)) of its first connection line. This formula contains: 

𝑧 > 0, an influence coefficient of the first connection line and function 𝑓(𝑏𝑟(𝑛)), an 

influence regulator of the first line, which depends on the relative balance of Assetbox 

number 𝑛. 

5.  

The issue of selecting the left boundary of the top (100th) level is solved using the 

generalized exponential distribution (Weibull distribution). 

First, we need to express the parameter of the generalized exponential distribution through 

its median. 

The generalized exponential distribution is as follows 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝[−(𝜆𝑥)𝛼], 𝑥 > 0. 

Let us solve the equation 𝐹(𝑥) = 1 2⁄ . Then, write down an equivalent equation 

1 2⁄ = 1 − 𝑒𝑥𝑝[−(𝜆𝑥)
𝛼

]. 

Let us find 

𝑒𝑥𝑝[−(𝜆𝑥)𝛼] = 1 2⁄  

and 

𝜆𝑥 = (ln2)(1 𝛼⁄ ). 

Therefore 
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𝑥(𝑚𝑒𝑑) = (ln2)(1 𝛼⁄ ) 𝜆⁄ . 

The next step is to express the quantile for the probability 0.99 through the parameter of the 

exponential distribution. 

Let us find the left boundary of level 100. We solve the equation 𝐹(𝑥) = 0.99, or 

0.99 = 1 − 𝑒𝑥𝑝[−(𝜆𝑥)𝛼], or 𝑒𝑥𝑝[−(𝜆𝑥)𝛼] = 0.01. 

Therefore 

𝜆𝑥 = (ln100)(1 𝛼⁄ ) 

and 

𝑥(0,99) = (ln100)(1 𝛼⁄ ) 𝜆⁄ . 

Then the relation is 𝑥(𝑚𝑒𝑑) = (ln2)(1 𝛼⁄ ) 𝜆⁄ , through the expression 

𝜆 = (ln2)(1 𝛼⁄ ) 𝑥(𝑚𝑒𝑑)⁄ , we find 

𝑥(0.99) = (ln100)(1 𝛼⁄ ) 𝜆⁄ = 𝑥(𝑚𝑒𝑑)(ln 100 ln⁄ 2)(1 𝛼⁄ ) = 𝑥(𝑚𝑒𝑑) ∗ [(log100) (log2)⁄ ](1 𝛼⁄ ), 

or 

𝑥(0.99) = 𝑥(𝑚𝑒𝑑)[(log100) (log2)⁄ ](1 𝛼⁄ ), 

or 

𝑥(0.99) = 𝑥(𝑚𝑒𝑑)[(log100) (log2)⁄ ](1 𝛼⁄ ) = 𝑥(𝑚𝑒𝑑)(2 log⁄ 2)(1 𝛼⁄ ). 

The left boundary of level 100 is expressed through the median of the exponential 

distribution as 

𝑥(𝑙𝑒𝑓𝑡)(100) = 𝑥(0.99) = 𝑥(𝑚𝑒𝑑)(2 log⁄ 2)(1 𝛼⁄ ). 

The next step is to determine the exponent of the distribution. 

In order to determine the exponent of the generalized exponential distribution, we use the 

expression for the expected value of a random variable with this distribution: 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝[−(𝜆𝑥)𝛼], 𝑥 > 0. 

It equals 𝑀(1) = (1 𝜆⁄ )𝛤(1 + 1 𝛼⁄ ). 

The expression for the median is 

𝑥(𝑚𝑒𝑑) = (ln2)(1 𝛼⁄ ) 𝜆⁄ , 

we find 
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𝑀 (1) 𝑥(𝑚𝑒𝑑)⁄ = 𝛤 (1 + 1 𝛼⁄ ) (ln2)(1 𝛼⁄ )⁄ . 

Let us calculate 

𝑀 (1) 𝑥(𝑚𝑒𝑑)⁄ = 𝐴. 

Let us solve the equation 

𝛤 (1 + 1 𝛼⁄ ) (ln2)(1 𝛼⁄ )⁄ = 𝐴 

of the relatively known exponent 𝛼. Here 

𝛤(1 + 1 𝛼⁄ ) = ∫

𝑡>0

𝑡(1 𝛼⁄ )exp(−𝑡)𝑑𝑡 

is the value of gamma function in the point 1 + 1 𝛼⁄ . 

Let us create the process of finding the expression 

(ln2)(1 𝛼⁄ ) ∫

𝑡>0

𝑡(1 𝛼⁄ )exp(−𝑡)𝑑𝑡 

with the previously assigned accuracy, the equation 

𝛤 (1 + 1 𝛼⁄ ) (ln2)(1 𝛼⁄ )⁄ = 𝐴 

is solved using bisection or the method of golden section. 

Let us use 𝛼 = 1 3⁄  for the initial structure. 

As an example. 

If 𝑥(𝑚𝑒𝑑) = 30, 𝛼 = 1 3⁄  

𝑥(𝑙𝑒𝑓𝑡)(100) = 30 ∗ (2 log⁄ 2)3 = 30 ∗ (6.64385618977472469574 … )3 = 8797.9588. .. 

6. 

Let us assign 

𝛥 = 𝑥𝑙𝑒𝑓𝑡(1) is the left boundary of the first level, the value the crediting of remuneration 

starts from, 

𝐴(1) — length of the first level interval, 

𝐿 — number of levels (in this case 𝐿 = 100), 

𝐷 = 𝑥𝑙𝑒𝑓𝑡(𝐿) — left boundary of the top level. 

Let us determine: 

𝑆 = [(𝐷 − 𝛥) 𝐴⁄ (1)][1 (𝐿−2)⁄ ] 

the range extender of level intervals (starting from the second one). 
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For all levels, starting from level 2 (2 ≤ 𝑘 ≤ 𝐿), the left interval boundary of level 𝑘 equals: 

𝑥𝑙𝑒𝑓𝑡(𝑘) = 𝑥𝑙𝑒𝑓𝑡(1) + 𝐴(1) ∗ 𝑆(𝑘−2) = 𝛥 + 𝐴(1) ∗ 𝑆(𝑘−2), 2 ≤ 𝑘 ≤ 𝐿. 

To illustrate this 

Let us calculate the length 𝛥(𝑘) of the level interval 𝑘, 1 ≤ 𝑘 ≤ 𝐿. 

If 𝑘 = 1, the length of the first level interval equals 𝐴(1): 

𝛥(1) = 𝑥𝑙𝑒𝑓𝑡(2) − 𝑥𝑙𝑒𝑓𝑡(1) = [𝑥𝑙𝑒𝑓𝑡(1) + 𝐴(1) ∗ 𝑆(2−2)] − 𝑥𝑙𝑒𝑓𝑡(1) = 𝐴(1). 

If 𝑘 = 2, the length of the second level interval equals: 

𝛥(2) = 𝑥𝑙𝑒𝑓𝑡(3) − 𝑥𝑙𝑒𝑓𝑡(2) = 𝐴(1) ∗ 𝑆(3−2) − 𝐴(1) = 𝐴(1) ∗ (𝑆 − 1). 

If 𝑘 = 3, the length of the third level interval equals: 

𝛥(3) = 𝑥𝑙𝑒𝑓𝑡(4) − 𝑥𝑙𝑒𝑓𝑡(3) = 𝐴(1) ∗ 𝑆(4−2) − 𝐴(1) ∗ 𝑆(3−2) = 𝐴(1) ∗ (𝑆2 − 𝑆). 

If 𝑘 = 4, the length of the fourth level interval equals: 

𝛥(4) = 𝑥𝑙𝑒𝑓𝑡(5) − 𝑥𝑙𝑒𝑓𝑡(4) = 𝐴(1) ∗ 𝑆(5−2) − 𝐴(1) ∗ 𝑆(4−2) = 𝐴(1) ∗ (𝑆3 − 𝑆2). 

If 𝑘 = 𝐿 − 1, the length of the 𝐿 − 1st level interval equals: 

𝛥(𝐿 − 1) = 𝑥𝑙𝑒𝑓𝑡(𝐿) − 𝑥𝑙𝑒𝑓𝑡(𝐿 − 1) = 𝐴(1) ∗ 𝑆(𝐿−2) − 𝐴(1) ∗ 𝑆(𝐿−3) = 𝐴(1) ∗

(𝑆(𝐿−2) − 𝑆(𝐿−3)). 

The left boundary of the 𝐿 level interval equals: 

𝑥𝑙𝑒𝑓𝑡(𝐿) = 𝑥𝑙𝑒𝑓𝑡(1) + 𝐴(1) ∗ 𝑆(𝐿−2) = 𝛥 + 𝐴(1) ∗ 𝑆(𝐿−2) = 𝛥 + 𝐴(1)[(𝐷 − 𝛥) 𝐴⁄ (1)] = 𝐷. 

The relation of lengths of adjacent intervals: 

𝛥 (𝑘 + 1) 𝛥⁄ (𝑘), 2 ≤ 𝑘 ≤ 𝐿 − 2, 

starting from the second and ending with 𝐿 − 2nd equals 𝑆: 

𝛥 (𝑘 + 1) 𝛥⁄ (𝑘) = [𝑆(𝑘) − 𝑆(𝑘−1)] [𝑆(𝑘−1) − 𝑆(𝑘−2)]⁄ = 𝑆 

for all 2 ≤ 𝑘 ≤ 𝐿 − 2. 

7. 

We calculate level percentage coefficients 𝑟(𝑘) (level percentages 100 ∗ 𝑟(𝑘)) for each 

level 𝑘,𝑘 = 1, . . . , 𝐿: 
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𝑟(𝑘) = 0.3 + 0.7 ∗ [(𝑘 − 1) (𝐿 − 1)⁄ ]𝛽, 

𝑘 = 1, . . . , 𝐿, while the power parameter 𝛽 > 0 determines the growth speed near small and 

big level values (downward or upward convexity of the level coefficients chart). If 𝛽 = 1, 

the growth speed is constant (points on the chart are in a straight line). 

8. 

Let us calculate the base power 𝑊𝑏(𝑛) of Assetbox 𝑛 for each Assetbox number 𝑛 using 

the formula: 

𝑊𝑏(𝑛) = 𝑚𝑎𝑥[0.25 ∗ 𝐵(𝑛); 𝑊], 

where 

𝑊 = 𝑚𝑖𝑛[𝐵(𝑛); 0.25 ∗ 𝑋] 

is a minimum of the balance 𝐵(𝑛) of the Assetbox number 𝑛 and the sum of minimums 

𝑚𝑖𝑛[𝐵(𝑛); 𝐵1(𝑛(𝑖))] of its balance 𝐵(𝑛) and balances 𝐵1(𝑛(𝑖)) = 𝐵(𝑛(𝑖)) of all the nodes 

of the first line of connection to Assetbox 𝑛 multiplied by the coefficient 0.25: 

𝑋 = ∑

[𝑙[1](𝑛)]

𝑖=1

𝑚𝑖𝑛[𝐵(𝑛); 𝐵1(𝑛(𝑖))]. 

In order to do that, let us perform the following sequence of actions. 

8.1. Using the superscripts 1, . .., we assign numbers to the levels (lines) of Assetboxes 

connected to the researched Assetbox. 

8.2. We calculate the secondary variable: 

𝑋 = ∑𝑙
𝑖=1 𝑚𝑖𝑛[𝐵(𝑛); 𝐵1(𝑛(𝑖))], 

where 𝑙 — number of Assetboxes in the first line of the Assetbox; 

𝐵1(𝑛(𝑖)) — balance of the 𝑖 Assetbox of the first line number 𝑛(𝑖). 

8.3. We calculate the secondary variable: 

𝑊 = 𝑚𝑖𝑛[𝐵(𝑛); 0.25 ∗ 𝑋]. 

8.4. We determine the base power: 

𝑊𝑏(𝑛) = 𝑚𝑎𝑥[0.25 ∗ 𝐵(𝑛); 𝑊].      
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Using this way of calculating base power, on condition that the first line of the researched 

Assetbox contains four Assetboxes with the balances equal to that of the researched one, 

this Assetbox will receive the maximum possible base power. There are other possible ways 

of structuring that would give the Assetbox the maximum possible base power for its 

balance. 

9. 

Let us enter the adjusted social power 𝑊𝑛𝑠(𝑛) for each Assetbox number 𝑛, which is 

determined by the source contents of the node 𝑛, Assetboxes numbers 𝑛(1), 𝑛(2), . . . , 𝑛(𝑙[1]) 

of the first line of connection 𝐿[1](𝑛) to the node 𝑛 (they provide the base power for entering 

a level) and contents of the Assetboxes of all its connection branches below the first line 

connected to the Assetbox with the level percentage lower than that of the Assetbox number 

𝑛 (common value П(𝑛)). 

𝑊𝑛𝑠(𝑛) = ∑ [𝑟(𝑛) − 𝐶*(𝑛(𝑖), 𝑛[1](𝜋), 𝑛)]
(𝑍(𝑛))

𝑖=(𝑙[1]+1)
∗ 𝐵(𝑛(𝑖)) ∗ 𝐼[𝑟(𝑛) > 𝐶*(𝑛(𝑖), 𝑛[1](𝜋), 𝑛)], 

where 𝑍(𝑛) = 𝑙[1] + П(𝑛). Here, the variable 𝐶∗(𝑛(𝑖), 𝑛[1](𝜋), 𝑛) is determined as follows. 

There is a singular connection path from the node 𝑛(𝑖), located below the first line of 

connection to the Assetbox 𝑛, to the node 𝑛: 

𝜋(𝑛[𝑠](𝑖), 𝑛) 

that equals: 

[𝑛[𝑠](𝑖) → 𝑛[𝑠−1](𝜋(𝑛[𝑠](𝑖), 𝑛)) →. . . → 𝑛[2](𝜋(𝑛[𝑠](𝑖), 𝑛)) → 𝑛[1](𝜋(𝑛[𝑠](𝑖), 𝑛)) →

𝑛[0](𝜋(𝑛[𝑠](𝑖), 𝑛))], 

or simplified as: 

[𝑛[𝑠](𝑖) → 𝑛[𝑠−1] →. . . → 𝑛[2] → 𝑛[1] → 𝑛[0]] 

that starts at the node 𝑛(𝑖) = 𝑛[𝑠](𝑖) at the bottom level [𝑠] and ends at the node 𝑛 =

𝑛[0](𝜋(𝑛[𝑠](𝑖), 𝑛)) = 𝑛[0] at the top one, at level 0 from its point of view. 

While 

𝐶∗(𝑛(𝑖), 𝑛[1](𝜋), 𝑛) = 𝑚𝑎𝑥[𝑟(𝑛[1])𝑟(𝑛[2]), 𝑟(𝑛[3]), . . . , 𝑟(𝑛[𝑠−1]), 𝑟(𝑛[𝑠])] 

is the maximum of all level percentage coefficients 
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𝑟(𝑛[1]), 𝑟(𝑛[2]), 𝑟(𝑛[3]), . . . , 𝑟(𝑛[𝑠−1]), 𝑟(𝑛[𝑠]) 

of the nodes 

𝑛[1], 𝑛[2], 𝑛[3], . . . , 𝑛[𝑠−1], 𝑛[𝑠] 

on the path 

𝜋(𝑛[𝑠](𝑖), 𝑛) = [𝑛[𝑠] → 𝑛[𝑠−1] →. . . → 𝑛[2] → 𝑛[1] → 𝑛[0]] 

of connections from the node 𝑛(𝑖) = 𝑛[𝑠](𝑖) = 𝑛[𝑠] to the node 𝑛 = 𝑛[0](𝜋(𝑛[𝑠](𝑖), 𝑛)) =

𝑛[0]. 

The sum total is calculated using all the branches below the first line of connection to 

Assetbox number 𝑛, the level percentage of which is lower than that of Assetbox number 𝑛. 

No branches of the Assetbox with the level percentage lower than that of Assetbox number 𝑛 

are used in calculations. 

10. 

Let us calculate the majorizing social power 𝑊𝑚𝑠(𝑛) for Assetbox number 𝑛: 

𝑊𝑚𝑠(𝑛) = ∑ [𝑟𝑚𝑎𝑥 − 𝐶*(𝑛(𝑖), 𝑛[1](𝜋), 𝑛)]
(𝑍(𝑛))

𝑖=(𝑙[1]+1)
∗ 𝐵(𝑛(𝑖)) ∗ 𝐼[𝑟𝑚𝑎𝑥 > 𝐶*(𝑛(𝑖), 𝑛[1](𝜋), 𝑛)]. 

The majorizing social power of node 𝑛  is different from the adjusted social power due to 

the use of the variable 𝑟𝑚𝑎𝑥 = 1 instead of the variable 𝑟(𝑛). 

11. 

Then we calculate the social power 𝑊𝑠(𝑛) of the node 𝑛 based on the adjusted social power 

𝑊𝑛𝑠(𝑛) using the formula: 

𝑊𝑠(𝑛) = 𝑊𝑛𝑠(𝑛) ∗ 𝑔(𝐶𝑜(𝑛)). 

Here we introduce the social normalizing function 𝑔(𝑥) to ensure the social direction of 

providing, which equals: 

𝑔(𝑥) = [ℎ + (1 − ℎ)(1 + 𝑝𝑥𝜂)𝑞(1−𝑥)], 

0 < ℎ < 1, 𝑞 > 1, 𝑝 ≥ 0, 𝜂 ≥ 0. 

Here ℎ — level of unachievable minimum of the social normalizing function; 

𝑝 — regulator of the wavelet of the social normalizing function chart; 

𝜂 — indicator of the power that ensures the wavelet of the function chart; 
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𝑞 — base of an exponential social normalizing function, which ensures its movement 

towards an unachievable minimum ℎ. 

The argument 𝑥 of the social normalizing function is represented by the variable: 

𝐶𝑜(𝑛) = 𝑊𝑚𝑠 (𝑛) 𝐵𝑎𝑣𝑔⁄ , 

which equals the relation between the majorizing social power 𝑊𝑚𝑠(𝑛) and the average 

𝐵𝑎𝑣𝑔 of the Assetbox balances. 

12. 

Let us calculate the power 𝑊(𝑛) for each Assetbox number 𝑛 as a sum of base and social 

powers of the node 𝑛: 

𝑊(𝑛) = 𝑊𝑏(𝑛) + 𝑊𝑠(𝑛) 

13. 

The received sum 𝑆 is split among all Assetboxes 

 𝑆 = ∑𝑁
𝑛=1 𝑆(𝑛) 

in direct proportion to their powers 𝑊(𝑛) using the formula for calculating remuneration 

𝑆(𝑛) 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛-th Assetbox: 

𝑆(𝑛) = 𝑆 ∗ 𝑊 (𝑛) 𝑊⁄ , 

where 

𝑊 = ∑𝑁
𝑛=1 𝑊(𝑛)   

is the sum of powers of all Assetboxes. 

The values of parameters in the realized model. 

𝑧 = 1 

𝑎 = 1 

𝛼 = 1 3⁄  

𝑐 = 0.8 

𝑑 = 1 3⁄  

𝑟𝑚𝑖𝑛 = 0.3, 𝐿 = 100, 𝛽 = 0.5 

𝑞 = 2, 𝑝 = 1.5, 𝜂 = 1.46, 𝛥 = 10−3, 𝐴(1) = 1, ℎ = 0.05  
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Parameters of the Formulas for Calculating Remuneration for Activity 

as a Registrator 

𝛥 = 10−3 — minimum Assetbox balance required to receive remuneration. 

𝐼(1) = 1 — length of the first level interval. 

k = 1 — first line value coefficient. 

ɑ = 1 — power of the main summands in an endless asymptotic. 

с = 0.8 — coefficient that regulates the value of the function in unity. 

d = 1/3 — exponent that allows setting the value of entering the level of zero 

Assetboxes to zero. 

𝑟𝑚𝑖𝑛 = 0.3 — minimum value of level percentage coefficients. 

L = 100 — tables of rank percentages of Assetbox powers and correspondence of the 

Assetbox power and the first line to a certain rank are calculated in a dynamic manner based 

on the maximum power in the system. As the number of levels changes, the boundaries of 

level intervals also change. 

β = 0.5 — power parameter that determines the level of growth near small and big level 

values; must be higher than 0. 

h = 0.05 — level of an unachievable minimum (bottom boundary) of a social function; 

must be higher than 0, but lower than 1. 

p = 1.5 — regulator of the wavelet of the normalizing function. 

r = 1.46 — power for the argument of the social function. 

q = 2 — base of an exponential social normalizing function q, which ensures its 

movement towards an unachievable minimum ℎ. 


